

School of Engineering

Scene Completeness-Aware Lidar Depth Completion for Driving Scenario

Cho-Ying Wu

Ulrich Neumann

CGIT Lab, Viterbi School of Engineering University of Southern California

Background

Lidar Depth Completion

Image

Dense depth map

Raw sparse depth

Background

Lidar Depth Completion

Image

Advantage of dense depth maps:

• Benefit outdoor RGB-D methods, such as semantic or instance segmentation.

Dense depth map

Raw sparse depth

State-of-the-art methods

Scene

Completed Depth map

FCFR-Net (AAAI 21)

PENet (ICRA 21)

State-of-the-art methods

Scene

Messy and unstructured upper scenes!

Completed Depth map

FCFR-Net (AAAI 21)

PENet (ICRA 21)

No groundtruth annotation for the upper scenes in KITTI

Scenes

Semi-dense depth as groundtruth

Scene

Completed Depth map

Object-level correspondence is not satisfied for outdoor RGB-D method

Omitted issue of scene completeness

- **1**. Depth Completion is treated as a standalone task.
- 2. Outdoor RGB-D methods are hard due to the obstacle of outdoor range-sensing.
- 3. Upper scenes are ignored since in most cases, upper scenes are sky and trees.

Omitted issue of scene completeness

- **1**. Depth Completion is treated as a standalone task.
- 2. Outdoor RGB-D methods are hard due to the obstacle of outdoor range-sensing.
- 3. Upper scenes are ignored since in most cases, upper scenes are sky and trees.

Improvements!

Our method for remedies on scene completeness

- **1**. We validate our scene completeness-aware depth on semantic segmentation
- 2. We improve over previous SOTA work on outdoor semantic segmentation using our depth.
- 3. We raise counter examples that upper scenes are important. For example, traffic poles or signs extend to the upper, or in a case when there is a large truck in front.

Stereo matching

Estimation from stereo pair

Stereo pair

V.S.

Lidar Completion

Stereo matching

Estimation from stereo pair

Stereo pair

Advantage: Structured upper scenes

V.S.

Advantage: Accuracy on lower scenes

Deep RGB-D Canonical Correlation Analysis for Sparse Depth Completion, Cho Ying Wu*, Yiqi Zhong*, Suya You, Ulrich Neumann (*Equal Contribution), Neural Information Processing System (NeurIPS), 2019

- Density along a scanline for KITTI is 44.6% at the center and 30.6% near the left/right side.
- Create the guide from the corresponding mask. Confidence = 1.0 for the raw point position.
- Dilate with a 3x3 kernel and choose a variance that drops values to half with 1-pixel distance from the center.

Semi-dense depth map is used for supervision

Total Loss

Supervision on stage outputs for Stacked Hourglass

Supervision on confidence

Where does upper scene structures come from? Prior from stereo matching

 $D_f = D_{stereo} \times M_{stereo} + D_{lidar} \times M_{lidar}.$

The stacked hourglass network learns a depth mapping from **coarse estimation to finer depth**. However, only lower scenes have available annotations. The network should not be over-parameterized that overfits the lower scene!

SCADC

Over-Parameterized

Advantage? Combining prior information of structured upper scenes from stereo matching and accurate depth estimation by lidar completion.

Obtain a both scene completeness-aware and accurate scene depth!

Experiments

Dataset: KITTI Depth Completion, including 42K training paired data (stereo pairs and lidars) and 3.4K validation data

Depth recovery accuracy metrics: Root Mean Square Error (RMSE), Rel (Relative Error), and delta series

$$\delta_i = \frac{|\{\hat{d} : \max(\frac{\hat{d}}{d}, \frac{d}{\hat{d}}) < 1.25^i\}|}{|\{d\}|},$$

Numerical Performance

Evaluation on KITTI Depth Completion Validation

Methods	RMSE	Rel	$\delta 1$	δ2	δ3
PSMNet	2.4107	0.1296	98.6	99.8	99.9
SSDC	1.0438	0.0191	99.3	99.8	99.9
SCADC	1.0096	0.0226	99.5	99.9	100.0

PSMNet (CVPR 2018): Stereo-matching based method SSDC (ICRA 2019): Lidar Completion based method SCADC: Our method

Chang, Jia-Ren, and Yong-Sheng Chen. "Pyramid stereo matching network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Ma, Fangchang, Guilherme Venturelli Cavalheiro, and Sertac Karaman. "Self-supervised sparse-to-dense: Self-supervised depth completion from lidar and monocular camera." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Upper Scene Recovery

Chang, Jia-Ren, and Yong-Sheng Chen. "Pyramid stereo matching network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Ma, Fangchang, Guilherme Venturelli Cavalheiro, and Sertac Karaman. "Self-supervised sparse-to-dense: Self-supervised depth completion from lidar and monocular camera." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Upper Scene Recovery - Benchmarking

Practicability - Application for completed depth maps

RGB-D outdoor semantic segmentation with our depth maps

Dataset: KITTI Semantic Segmentation. Only 142/200 frames are associated with stereo pairs and lidar scans. We separate the available data into 121/21 for training and testing sets.

Metrics: mean Intersection over Union (mIoU)

Methods	mIoU	
SDNet (GCPR 2019)	51.15	
SGDepth (ECCV 2020)	53.04	
SSMA (IJCV 2019)	54.76	
SSMA + Our SCADC depth	61.57	

Practicability

Visualizations: SSMA + our depth map

Demo

Summary

- Sensor fusion for lidar and stereo cameras obtains both scene complete and accurate depth.
- Counter examples for the non-importance of upper scene depth are raised. Many examples show that upper scene structures are important for the driving scenario.
- We illustrate real-world applications for completed depth on outdoor RGB-D semantic segmentation, contrary to previous works that treat depth completion as a standalone task.

Summary

Thank you and please take a look at our poster #2152 for more illustrations, demos, and code and data link.