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Fig. 1. GAIS-Net results on HQDS dataset. Left column shows stereo left images with his-
togram equalization to enhance contrast for better visualization. Middle and last column show
Mask-RCNN and GAIS-Net results, respectively. Each instance has different colors. With the
aid of geometric information, GAIS-Net can segment out the person from the overlapping area
in the first row example. In the second row scenario, Mask-RCNN generates distorted mask for
the smoking motorcyclist because of cigarette plume and in contrast GAIS-Net displays a more
robust shape control capability.

Abstract. Instance segmentation for autonomous driving aims at identifying each
object of interest to facilitate environment understanding on roads. Most previous
works of instance segmentation for images only use color information. We ex-
plore a novel direction of sensor fusion to exploit disparity modality from stereo
cameras. Our work fuses images and geometric scene priors and further directly
regresses masks from disparity maps. The geometric information helps separate
overlapping objects of the same or different classes. Moreover, geometric infor-
mation penalizes region proposals with unlikely 3D shapes thus suppressing false
positive detections. Mask regression is based on 2D, 2.5D, and 3D ROI using the
pseudo-lidar and image-based representations with a self-supervised correspon-
dence loss. These mask predictions are fused by a mask scoring process. How-
ever, public datasets only adopt stereo systems with shorter baseline and focal
legnth, which limit measuring ranges and produce disparities with larger error.
We collect and utilize High-Quality Driving Stereo (HQDS) dataset, using much
longer baseline and focal length with higher resolution. Our performance attains
state of the art. Codes will be released.

1 Introduction

Instance segmentation, which segments out every object of interest, is an elemental
and important task for computer vision. It is crucial for autonomous driving because
it is vital to know positions for every object instance on roads. Instance masks are
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widely used in object detection [1, 5, 37, 50], object tracking [6, 19, 44], and HD-maps
constructions [4].

In the context of instance segmentation on images, previous approaches only oper-
ate on RGB imagery, such as Mask-RCNN [16]. However, image data could be affected
by illumination, color change, shadows, or optical defects. These factors can degrade
the performance of image-based instance segmentation. By utilizing another modality
that provides geometric cues of scenes, and since object shapes are independent of ob-
ject texture and color change, these strong priors add more robust information of the
scenes. A prior work [52] that goes beyond the dominant paradigm to incorporate depth
information only uses it for naive ordering rather than directly regressing masks.

Also, there are some works on RGBD semantic segmentation [15, 39, 46], which
work on indoor scenes with low resolutions and limited ranges. Instance segmentation
is arguably harder than semantic segmentation since we need to separate every instance
out rather than only regressing pixel classes. In addition, sensor fusion for outdoor
scenes is much harder and has been less explored than indoors, since much longer
range sensing is required to align information from images and depth. Such as vehicles
at distances showing in images but undetected by a depth sensor would bring ambiguity
into RGBD methods.

In outdoor scenes, stereo cameras or lidar sensors are commonly used for depth
acquisition. Lidars are precise, although they have several disadvantages compared with
stereo cameras. The performance of lidars is restricted by their power and measuring
range of sensors, and the nature of lidar scans leads to limited spatial resolution and
produces sparse depth maps. From a practical perspective, lidars are commonly much
more expensive than stereo cameras as well.

Stereo cameras are low-cost, and their adjustable parameters, such as longer base-
lines (b) and focal lengths (f ), favor stereo matching at far fields. Relationship of depth
and disparity is given by

depth =
f × b

disparity
. (1)

1-disparity (the minimal pixel difference showing the ideal longest range a stereo sys-
tem could detect) represents farther distance if using longer f and b. Likewise, a far
object could have larger disparity if using longer f and b. Next, longer baselines and
focal lengths favor more precise geometric estimations [14, 36], since longer baselines
produce smaller triangulation error, and longer focal lengths project objects on images
with more pixels and thus enhance the robustness of stereo matching and show more
complete shapes. Using longer baselines and focal lengths to reconstruct 3D from mul-
tiview attracts lots of research interest before deep learning [12, 13, 21, 28, 48].

Recent deep learning based stereo matching algorithms are capable of generating
high-quality and dense disparity estimations that rival the accuracy of lidar measure-
ments and achieve much higher angular resolutions [3,51,53]. By using longer baselines
and focal lengths, stereo cameras can exceed lidars’ working distance.

In this work, we explore a novel direction of sensor fusion to develop an end-to-end
trainable Geometry-Aware Instance Segmentation Network (GAIS-Net) that takes the
advantages of both the semantic information from image domain and geometric infor-
mation from disparity maps. GAIS-Net firstly extracts features and generates proposals
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from images. Disparity maps are then introduced at the ROI heads, where the encoded
geometry helps the network control shapes to regress more complete shapes. We use the
proposals to crop out the ROI in disparity maps. To fully utilize representation advan-
tages, we adopt both the pseudo-lidar representation, which pops up the disparity from
images and extracts features using a point cloud based-network, and the image-based
representation using a CNN. We regress masks from images, image-based disparity,
and pseudo lidar-based disparity features. In addition to mask loss for shape control,
a self-supervised correspondence loss is used to self-guide the training from different
representations, and a mask continuity loss reduces the shape distortion problem in
pseudo-lidar sampling. At inference time, we fuse the masks using mask scoring.

GAIS-Net’s motivation for sensor fusion exploits the stereo camera modality. It is
practical in autonomous driving since stereo cameras are commonly used as depth ac-
quisition sensors on self-driving cars and they are much cheaper than lidars. Instance
segmentation benchmarks currently lack stereo pairs with longer baselines, longer fo-
cal lengths and higher resolutions. We collect a High-Quality Driving Stereo (HQDS)
dataset, with a total of 8.8K stereo pairs with f × b 4 times larger than the current best
dataset, Cityscapes [7]. We compare GAIS-Net with recent benchmark algorithms on
HQDS. The results show that GAIS-Net achieves state-of-the-art performance. We also
validate on Cityscapes but with shorter f and b.

Our contributions are summarized as follows:
1. To our knowledge, we are the first to perform instance segmentation on imagery

by fusing images and disparity information to regress object masks.
2. We collect HQDS dataset with longer baseline and longer focal length, which

favors far-field stereo matching.
3. We present GAIS-Net, an aggregation of representation design for instance seg-

mentation using images, image-based, and point cloud-based networks. We train GAIS-
Net with different losses, and fuse these predictions using the mask scoring. GAIS-Net
achieves the state of the art.

2 Related Work

2.1 Instance Segmentation

Instance segmentation has attracted much research interest in computer vision. Methods
of instance segmentation on imagery fall into 2 categories: segmentation-based, object
detection-based.

Segmentation-based methods usually perform per-pixel semantic labeling followed
by clustering to develop instances. DWT [1] learns a watershed transform to segment
out each object by cutting at an energy level, and resulting connected components repre-
sent instances. Zhang et al. [54,55] use networks to predict instance labels first and then
adopt MRF on the patch level to ensure local and global consistency. InstanceCut [26]
combines semantic segmentation and edge detection to separate out each instance.

Detection-based methods usually perform object detection to generate proposals
first and then regress a mask within a region of interest. Mask-RCNN [16], based
on a 2-stage detection network with Region Proposal Network (RPN) from Faster-
RCNN [42], further introduces a mask head to regress masks for detected bounding
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boxes. PANet [34] adds a bottom-up path augmentation and adaptive pooling in Mask-
RCNN for better information flow. However, its inference frames-per-second is much
lower than Mask-RCNN and thus not suitable for real applications. MS-RCNN [20]
introduces a MaskIoU head to directly regress MaskIoU scores, which could calibrate
misalignments between mask quality and confidence scores and prioritize more accu-
rate mask predictions. However, their regressed mask scores are not used at inference
time to help mask shape control. Recent research focuses on detection-based methods
for their high performance and robustness.

There are some hybrid methods combining semantic segmentation and instance seg-
mentation using both pixel-level and instance-level labeling to enhance scene under-
standing. Recently, HTC [5] adopts a multi-stage cascade detection network [2] with
semantic information flow. Semantic regression is used to refine cascaded masks. UP-
SNet [49] and SSAP [10] focus on panoptic segmentation [25] combining both seman-
tic and instance segmentation with multi-task learning. These methods require both
pixel-level and instance-level segmentation groundtruth. More complete scene under-
standing could be learned such as relationships of classes road and vehicle or street and
pedestrian, which could not be learned from solely using instance-level labeling since
road and street are uncountable and thus unlabeled. However, acquiring both per-pixel
and per-instance groundtruth labeling is expensive for real applications. By contrast,
detection-based methods such as Mask-RCNN and our work, do not require extra per-
pixel semantic labeling but only need instance-level labeling.

Neven et al. [35], which is not categorized into segmentation or detection-based
methods, predict per-pixel class-specific seed maps and sigma maps followed by clus-
tering to regress masks. Recently, there is some work [8, 9] using metric learning for
instance segmentation.

Instance segmentation with depth. Ye et al. [52] adopt a simple depth ordering
technique, which uses depth information to reconcile overlapping areas between two
objects. An overlapping area is assigned to objects depending on which object has much
closer depth values to this area. However, they neither use depth information to regress
mask shapes, nor build an end-to-end trainable model to propagate depth information.
Besides, their depth maps are predicted from monocular images, making the depth or-
dering unreliable.

2.2 Sensor Fusion for Detection

Recent work for 3D object detection usually combines different data modalities such as
images and lidar point cloud [27, 29, 30, 37]. However, the recently introduced pseudo-
lidar work [47] demonstrates that with appropriate processing, stereo depth data could
produce 3D detection results on par with results obtained using both cameras and lidars,
or with lidars only. In particular, pseudo-lidar displays that by simply popping the stereo
disparity map into depth point cloud, lidar-based detectors could be used to great effect.

These works show that in addition to depth domain information, image domain in-
formation is semantic and thus could help 3D bounding box detection. Different from
them, our work demonstrates that using disparity, which contains geometric informa-
tion as priors, can greatly benefit 2D instance segmentation. The final mask inference is
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Fig. 2. Network design of our GAIS-Net. Bbox is for bounding box. We color modules in blue
and outputs or loss parts in orange. In the MaskIoU module, the 2D features and 2D predicted
mask are from the 2D mask head. They are fed into MaskIoU head to regress MaskIoU scores.
We draw the MaskIoU head separately for clear visualization. ⊕ stands for concatenation.

obtained by using mask scoring to fuse predictions from geometric and semantic infor-
mation, making the output more accurate than using single modality. Besides, our work
only requires shape and geometric information, which is embedded in disparity maps,
and does not need actual depth values. Therefore, we do not convert disparity to depth
as done in the pseudo-lidar work [47].

3 Method

Our goal is to construct an end-to-end trainable network to perform instance segmenta-
tion for autonomous driving. Our system segments out each instance and outputs con-
fidence scores for bounding boxes and masks for each instance. To exploit geometric
information, we adopt PSMNet [3], the state-of-the-art stereo matching network, and
introduce disparity information at ROI heads. The whole network design is in Fig. 2.

Two-stage networks on object detection, such as Faster-RCNN [42] and Mask-
RCNN [16], are generally more precise than single-stage networks. We build a two-
stage detector with a backbone network (such as ResNet50-FPN [17, 31]) and a region
proposal network (RPN) with non-maximum suppression. Object proposals are col-
lected by feeding a stereo left image into the backbone network and RPN. Same as
Faster-RCNN and Mask-RCNN, we perform bounding box regression, class prediction
for proposals, and mask prediction based on image domain features. Corresponding
losses are denoted as Lbox (error of regressed box parameters), Lcls (cross-entropy
with groundtruth class), and L2Dmask (cross-entropy with groundtruth mask) and are
identified in [16].

We then introduce geometry-aware mask prediction, which bundles image-based
and point cloud-based representation to aggregate features for mask prediction.
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3.1 Geometry-Aware Mask Prediction

2.5D ROI and 3D ROI. Conventional methods of stereo matching, such as block
matching or SGM [18], usually produce sparse and incomplete disparity maps. Re-
cently, neural networks-based approaches have demonstrated capabilities to predict
dense disparity maps and outperform conventional methods. We use PSMNet [3] to
predict dense disparity maps, projected onto the left stereo frame. Next, RPN outputs
numerous region proposals. We collect proposals and crop out these areas from the
disparity map. We call these cropped out disparity areas as 2.5D ROI.

Based on the observations from pseudo-lidar work, which describes the advantage
of back-projecting 2D grid structured data into 3D point cloud and processing with
point cloud networks, we back-project the disparity map into R3 space, where for each
point, the first and second components describe its 2D grid coordinates, and the third
component stores its disparity value. We name this representation as 3D ROI.

Pseudo-lidar work further converts disparity to depth. However, based on the metric
error in depth ∆Z, pixel matching error ∆m, |∆Z| = Z2∆m

bf , the error would quadrat-
ically increase with depth Z. For instance segmentation on images, using the disparity
representation is better than converting to depth, since disparity maps already contain
shape information of objects and do not suffer from the quadratically increasing error
issue. See the supplementary for validation.

Instance Segmentation Networks. Each 3D ROI contains different number of
points. To facilitate training, we uniformly sample the 3D ROI to 1024 points, and col-
lect all the 3D ROI into a tensor. We develop a PointNet [38] structured instance seg-
mentation network to extract point features and perform per-point mask probability pre-
diction. We re-project the 3D feature onto the 2D grid to calculate the mask prediction
and its loss L3Dmask. The re-projection is efficient because we do not break the point
order in the point cloud-based instance segmentation. L3Dmask, same as L2Dmask, is a
cross-entropy loss between a predicted probability mask and its matched groundtruth.

To fully utilize advantages of different representations, we further do 2.5D ROI
instance segmentation with an image-based CNN. Similar to instance segmentation on
2D ROI, this network extracts local features of 2.5D ROI, and later performs per-pixel
mask probability prediction. The mask prediction loss is denoted as L2.5Dmask. In the
later ablation study, we find that 2.5D ROI and 3D ROI have advantages at different
IoU levels. Network architectures are detailed in the supplementary.

3.2 Mask Continuity

We sample 3D ROI to 1024 points uniformly. However, predicted mask outlines are
sensitive to pseudo-lidar sampling strategies. An undesirable sampling is illustrated in
Fig. 3. If a sampled point just lies outside a foreground object, its occupied cell would
represent background. After sampling, the point cloud shows a skewed contour. Using
this point cloud as an input to the point cloud-based instance segmentation network, we
would obtain a mask with irregular outlines. The predicted probability mask is denoted
as M3D. To compensate the undesirable effect, we introduce a mask continuity loss.

We address the outline irregularity issue at M3D. Since objects are structured and
continuous, we calculate a mask Laplacian as ∇2M = ∂2M

∂x2 + ∂2M
∂y2 , where x and y
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Fig. 3. Undesirable sampling example. The blue areas represent the foreground. Suppose we
uniformly sample every grid center point in the left figure, resulting in the point cloud showing
in the occupancy grid in the right. Red crosses are undesirable sampling points, which just lie
outside the foreground object, making the shape after sampling different from the original one.

denote the dimensions of M . Mask Laplacian computes continuity of M . Further, the
mask continuity loss is calculated as Lcont = ‖∇2M‖2 for penalizing discontinuities
of M .

3.3 Representation Correspondence

We use the point cloud-based network and the image-based network to extract features
and regress M3D and M2.5D. The regressed M3D and M2.5D should be similar be-
cause they are from the same source of data, disparity, as shown in Fig. 2. To evaluate
the similarity, cross-entropy is calculated between M3D and M2.5D, and serves as a
correspondence loss Lcorr.

Lcorr is a self-supervised loss. Minimizing this loss term will let the networks of
different representations supervise and guide each other to extract more descriptive fea-
tures for mask regressing, resulting in similar probability distribution between M2.5D

and M3D. Thus, the correspondence between different representations from the same
data source is ensured through optimizing Lcorr.

Mask-RCNN uses a 14 × 14 feature grid after ROI pooling to regress masks. We
also use this size at the mask heads of different representations. For 1024-point 3D ROI,
after re-projection onto image grids with a size of 32 × 32, we bilinearly downsample
to 14× 14 in order to have a uniform mask size.

3.4 Mask Scores and Mask Fusion

MS-RCNN [20] introduces mask scoring, which directly regresses MaskIoU scores
based on a predicted mask and its associated matched groundtruth. They first concate-
nate extracted image features and the predicted mask, and the concatenation is later in-
troduced to the MaskIoU head to regress a MaskIoU score, which represents the quality
of the predicted mask. However, their regressed MaskIoU score is not directly used at
the inference time to help manipulate mask shapes.

We adopt the mask scoring mechanism and further exploit regressed mask scores
to fuse mask predictions from different representations. A predicted mask should score
high if its shape is a good fit with the associated groundtruth, and should score low if
there is a misalignment between the prediction and the groundtruth. The mask scoring
process should not be different for each representation. Therefore, at the training stage,
we only use 2D image features andM2D to train a single MaskIoU head instead of con-
structing 3 MaskIoU heads for each representation. In this way, the MaskIoU module
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Fig. 4. Inference time mask fusion of predictions from different representations. We fuse the
2.5D mask and 3D mask first because they are from the same source. We then fuse the mask
predictions from the image domain and disparity. ⊕ represents concatenation. Masks are linearly
combined using their associated mask scores. Therefore, a mask with higher score, i.e. having a
better mask shape, contributes to the final mask more.

would not add much more memory use and the training is also effective. The MaskIoU
loss is denoted as Lmiou.

The total training loss function is formulated as follows.

Ltotal =
from Mask-RCNN︷ ︸︸ ︷

Lcls + Lbox + L2Dmask +

wD(L2.5Dmask + L3Dmask) + wcorrLcorr + wcontLcont + wmLmiou,
(2)

where wD is the weight controlling the disparity mask loss, wcorr is for the 2.5D/3D
correspondence loss, wcont is for the 3D continuity loss, and wm is for MaskIoU loss.
The mask fusion process is illustrated in Fig. 4. During the inference time, we concate-
nate features and predicted masks of different representations respectively as inputs to
the MaskIoU head. Masks of M2D,M2.5D, and M3D and scores of s2D, s2.5D, and
s3D are outputs from the MaskIoU head. We fuse these mask predictions using their
corresponding mask scores. We first linearly combine (M2.5D, s2.5D) and (M3D, s3D)
to obtain (MD, sD) for the disparity. The formulation is as follows.

MD =M2.5D ×
s2.5D

s2.5D + s3D
+M3D ×

s3D
s2.5D + s3D

, (3)

sD = s2.5D ×
s2.5D

s2.5D + s3D
+ s3D ×

s3D
s2.5D + s3D

. (4)

Later, we linearly fuse (M2D, s2D) and (MD, sD) likewise to obtain the final probabil-
ity mask Mf and its corresponding final mask score. The inferred mask is created by
binarizing Mf .

4 Experiments

4.1 HQDS Dataset

Outdoor RGBD scene understanding is still less explored since information of images
and depth are usually misaligned with low-quality depth acquisition as discussed in Sec-
tion 1. Current instance segmentation benchmarks lack stereo pairs with long baselines,
long focal lengths, and high resolutions for driving scenes.
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Dataset Stereo
Resolution

(megapixels) Stereo Pairs # Baseline (m) fx (pixels)
Measuring

distance (km)
COCO 7 <0.5 - - - -

Mapillary 7 7.99 - - - -
Cityscapes X 2.09 2.7K 0.2 2.2K up to 0.44

KITTI X 0.71 0.2K 0.5 0.7K up to 0.35

HQDS X 3.15 6K 0.5 3.3K up to 1.65

Table 1. Datasets comparison between collected HQDS and other public datasets for in-
stance segmentation training set. Only COCO [32] is for common objects, and the others are
for driving scenes. Stereo pairs # means number of training stereo pairs. Stereo cameras baseline
is in meters. fx is for horizontal focal length in pixels. Measuring distance in kilometers is calcu-
lated by fx× baseline divided by 1-pixel disparity, showing the ideal farthest possible operating
ranges of stereo systems.

To conduct exploration of outdoor RGBD sensor fusion, and provide a high qual-
ity platform to fairly evaluate RGBD methods and reveal advantages of sensor fusion,
we collect High-Quality Driving Stereo (HQDS) dataset in urban environments. Table
1 shows a comparison with other public datasets for instance segmentation. From the
table and Eq. 1. HQDS has the longest f × b. Measuring range by the configuration
is up to 1650 meters with 1-pixel disparity, which is only 440 and 350 for Cityscapes
and KITTI. Note that produced disparity maps are computed by stereo matching meth-
ods so actual working distances are associated with methods’ robustness and image
noise. However, as discussed in Section 1, longer baselines and focal lengths still favor
far-field stereo matching for the same stereo matching method. A system with longer
baseline and focal length, which produces larger disparity for the same far object com-
pared with a system using shorter parameters (see Eq.1), could show better geometry
and more complete shapes for objects at distances [14, 36].

Image resolution of HQDS is 1024×3072. The collected images are monochromatic
based on the hardware choice and each pixel has a 12-bit response, which could generate
more descriptive and robust features for networks compared with normal 8-bit images.
Note that ordinary CMOS sensors only have a 8-bit response for each pixel, and later a
color filter array is applied to interpolate RGB colors for every pixel.

HQDS contains 6K and 1.2K images for training and testing. We follow a half-
automation process to perform data annotations with a group of supervised annotators.
Our internal large-scale labeling system produces preliminaries, and the annotators ad-
just yielded bounding boxes and mask shapes or filter out false predictions to produce
groundtruth for HQDS. We also do quality check and is described in the supplementary.

There are 60K instances in the training set and 11K in the testing set. Other datasets
on driving adopt more instance classes such as Cityscapes uses 8. However, from MaskR-
CNN’s study [16] and others [1,26,33], their classes are with much inter-class ambigu-
ity and thus cause biased results, such as truck/train/bus/cars or person/rider. Therefore
we choose to use 3 classes as human, bicycle/motorcycle, and vehicle. Human includes
pedestrians or riders and vehicle includes transportation with covers. Associated num-
ber of instances in the training and testing set are (5.5K, 1.5K, 52.8K) and (2.4K, 1K,
8.4K) respectively. Most of non-synthetic datasets encounter class-imbalanced issue,
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and compared with Cityscapes, we focus on more crowded vehicle scenes. To remedy
the imbalance, we adopt COCO dataset [32], which is a large-scale common objects
dataset of instance segmentation with 81 classes, and use their pretrained weights with
class pruning in our implementations and comparison methods.

We further collect an additional and more difficult 1.6K testing set under different
days and places for more evaluations and it is detailed in the supplementary.

Implementation. We implement GAIS-Net with PyTorch. Our training settings fol-
low the Mask-RCNN experiment on Cityscapes. We adopt ResNet50-FPN as the back-
bone with pretrained weights on the COCO dataset. We find deeper backbone networks
perform similarly, which is also reported in Mask-RCNN on Cityscapes. We use batch
size 8 with 8 GPUs and pick the best model within 1x training schedule (50K itera-
tions). During the training and testing, we do not rescale the input image size, since
downsizing could cause aliasing or blurring effects to downgrade image quality. Eval-
uation and Metrics. We fairly compare with recent state-of-the-art methods validated
on large-scale COCO instance segmentation [32], including Mask-RCNN [16], MS-
RCNN [20], Cascade Mask RCNN [5], and HTC [5] (without semantics), by using their
publicly released codes and their COCO pretrained weights. We follow their training
procedures to conduct comparison experiments.

For evaluation metrics, same as most previous works [5,16,20], we report numerical
results in the standard COCO-style . Average precision (AP) averages across different
IoU levels, from 0.5 to 0.95 with 0.05 as an interval. AP50 and AP75 are 2 typical IoU
levels. APS and APL are AP at small and large scale objects. The units are %. Both
bounding box and mask results are reported.

From the comparison results in Table 2, we conclude that our GAIS-Net attains the
state of the art compared with other works in nearly all metrics. We exceed Mask-RCNN
using the same backbone by 9.7% and 6.8% in bounding box and mask AP, respectively.
We further compare with Mask-RCNN using ResNet101 and ResNeXt101 as back-
bones in Table 3. One can observe that performance of Mask-RCNN with ResNeXt101
is on par with GAIS-Net. However, its number of parameters is nearly double of GAIS-
Net. This result validates GAIS-Net design.

Ablation Studies. The importance of individual module is analyzed on HQDS. We
follow the fashion of ablation study of previous works [5, 29, 45] and compare GAIS-
Net final model with variants including stripping the following modules sequentially. 1)
mask scoring and fusion (In this setting, at the inference time the masks are fused with
equal weights,) 2) mask continuity loss, 3) representation correspondence loss, 4) 2.5D
module (the 2D and 3D masks are fused with equal weights,) and 5) w/ 2.5D module
but w/o 3D module (2D and 2.5D masks are fused with equal weights. The results are
shown in Table 4. From this study one could find that using 2D and 3D representations
has better AP50, and using 2D and 2.5D has better AP75. The performance is further
improved by adopting all 3 representations. The other modules all contribute to the final
model performance.

It is worth noting that various representations on mask regression, representation
correspondence, and mask scoring/ fusion all boost bounding box AP. This result high-
lights the multi-task learning advantage, which shares information and performs several
related tasks simultaneously [24, 40, 43]. In GAIS-Net, the bounding box head, mask



GAIS-Net: Geometry-Aware Instance Segmentation using Stereo Disparity 11

Table 2. Quantitative comparison on HQDS testing set. The first table is for bounding box
evaluation. The second table is for mask evaluation. # params means number of parameters

Bbox Evaluation Backbone AP AP50 AP75 APS APL # params
Mask-RCNN ResNet50+FPN 36.3 57.4 38.8 19.1 51.9 44.1M
MS-RCNN ResNet50+FPN 42.2 65.1 46.6 20.8 59.6 60.8M

Cascade Mask-RCNN ResNet50+FPN 37.4 55.8 38.9 18.0 54.7 77.4M
HTC ResNet50+FPN 39.4 58.3 43.1 18.5 57.9 77.6M

GAIS-Net ResNet50+FPN 46.0 67.7 53.3 23.6 66.2 62.6M

Mask Evaluation Backbone AP AP50 AP75 APS APL # params
Mask-RCNN ResNet50+FPN 33.9 53.2 35.5 14.4 49.7 44.1M
MS-RCNN ResNet50+FPN 39.2 61.3 40.4 18.8 56.4 60.8M

Cascade Mask-RCNN ResNet50+FPN 33.4 54.4 34.8 11.7 49.5 77.4M
HTC w/o semantics ResNet50+FPN 34.5 56.9 36.7 11.6 52.0 77.6M

GAIS-Net ResNet50+FPN 40.7 65.9 43.5 18.3 59.2 62.6M

Table 3. Quantitative comparison on HQDS testing set with Mask-RCNN using different
backbones.

Bbox Evaluation Backbone AP AP50 AP75 APS APL # params
Mask-RCNN ResNet50+FPN 36.3 57.4 38.8 19.1 51.9 44.1M
Mask-RCNN ResNet101+FPN 40.6 62.0 45.9 21.0 59.8 63.1M
Mask-RCNN ResNeXt101+FPN 43.5 64.7 49.3 22.7 62.4 107M

GAIS-Net ResNet50+FPN 46.0 67.7 53.3 23.6 66.2 62.6M

Mask Evaluation Backbone AP AP50 AP75 APS APL # params
Mask-RCNN ResNet50+FPN 33.9 53.2 35.5 14.4 49.7 44.1M
Mask-RCNN ResNet101+FPN 36.4 58.9 35.2 17.6 53.1 63.1M
Mask-RCNN ResNeXt101+FPN 40.6 62.0 47.9 18.7 59.3 107M

GAIS-Net ResNet50+FPN 40.7 65.9 43.5 18.3 59.2 62.6M

head with different representations, and MaskIoU head share the backbone. Through
designing more advanced network modules and introduction of disparity information
at the mask heads, and by the backprop, the backbone network could extract more in-
formative features, which are also beneficial for bounding box regression. Therefore,
disparity information not only contributes to mask regression, but also helps constrain
backbone feature extraction to improve performance on bounding box regression.

Mask-RCNN, MS-RCNN, and HTC also perform multi-task learning. Their bound-
ing box AP performances also increase compared with their baseline approaches, but
not prominently. However, our GAIS-Net, compared with Mask-RCNN using ResNet50-
FPN, increases the AP by 9.7% and 6.8% for box and mask evaluations. This is because
our GAIS-Net is a multi-modal and multi-task learning framework, but other compar-
ing methods are multi-task learning with single modality. GAIS-Net demonstrates the
advantage of our multi-task and multi-modal learning design.

We also study different sensor fusion strategies. There are early fusion and late fu-
sion as baseline methods in the sensor fusion context [11, 22, 41]. The former fuses
information before information encoding, and the latter is opposite. Here we compare
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Table 4. Ablation study on HQDS dataset. Symbol ’-’ denotes excluding the following module.
Repr. Corr. means representation correspondence.

Bbox Evaluation AP AP50 AP75 APS APL

GAIS-Net 46.0 67.7 53.3 23.6 66.2
-Scoring/ Fusion 45.5 67.4 50.7 23.7 65.3
-Mask Continuity 45.5 67.4 50.8 23.2 65.2

-Repr. Corr. 44.6 67.3 49.6 22.4 64.5
-2.5D(w/ 2D&3D) 44.7 67.6 50.8 22.7 64.3
-3D(w/ 2.5D&2D) 44.2 66.4 50.5 23.4 62.6

Mask Evaluation AP AP50 AP75 APS APL

GAIS-Net 40.7 65.9 43.5 18.3 59.2
-Scoring/ Fusion 40.3 65.6 43.5 17.8 59.0
-Mask Continuity 40.0 65.3 43.2 17.6 58.4

-Repr. Corr. 39.7 65.1 41.9 17.8 57.9
-2.5D(w/ 2D&3D) 36.0 66.2 32.1 17.2 52.0
-3D(w/ 2.5D&2D) 39.8 61.6 43.6 17.7 57.1

Table 5. Network structure comparison with early fusion and late fusion. We use only 2D
and 3D representations in these methods for this comparison.

Bbox Evaluation AP AP50 AP75 APS APL

Early Fusion 33.5 51.8 36.9 16.0 49.8
Late Fusion 34.4 54.2 36.4 15.6 49.2
GAIS-Net 44.7 67.6 50.8 22.7 64.3

Mask Evaluation AP AP50 AP75 APS APL

Early Fusion 29.9 50.2 28.6 11.7 45.3
Late Fusion 29.2 48.8 28.9 11.1 42.1
GAIS-Net 36.0 66.2 36.1 17.2 52.0

with early fusion and late fusion network designs. The examined structures are illus-
trated in Fig. 5. We also conduct an ablation study on the architecture of fusion in the
supplementary.

Qualitative Results. We demonstrate qualitative comparison with other works in
Fig. 6. These examples show the advantage of using both images and disparity maps.
We give more visual results in the supplementary.

4.2 Cityscapes Dataset

We also conduct experiments on Cityscapes dataset. Cityscapes is currently the public
dataset on instance segmentation with stereo pairs and enough training data, as seen
in Table 1. Cityscapes contains 2725 and 500 images with fine annotations in their
training and validation set. Besides, coarse annotations for training are provided. Their
script evaluates only mask AP.

However, Cityscape’s baseline and focal length are shorter than HQDS, and the
maximal measuring distance is only 1/4 of HQDS. Much shorter focal length and base-
line limit the working distance of stereo matching and produce disparity maps only
focusing at near fields with poor shapes and geometry [14, 36], as discussed in Section
4.1 on the dataset comparison.
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Fig. 5. Early fusion framework and late fusion framework as baseline methods.

Fig. 6. Qualitative comparison on HQDS. In column (a), there is an area of false prediction of
a car on the lower side in the Mask-RCNN’s result, which stems from false predictions (engine
hood of self car) of preliminary labeling during the half-automation annotation process. During
the manual stage, we inspect and deliberately leave 60 false car predictions on the lower side
in the training data to examine robustness to these adversarial training examples representing
different data processing pipelines. (Some datasets for driving do not crop out self-car engine
hood from images.) Compared with MaskRCNN, GAIS-Net uses another modality to suppress
the false detection based on the scene geometry. We show more results using geometric infor-
mation to suppress false detections in the supplementary. In column (b), GAIS-Net has the best
segmentation result with the most similar mask shapes to the groundtruth. In column (c), there
is an infrequent human pose. If using only the image information, Mask-RCNN could detect the
rider at the rear, but the rider ahead has a poor mask shape. Using another modality, GAIS-Net is
able to further regress both shapes of the two riders. In column (d), some methods do not predict
the truck since its intensity values at the head and body are different. Besides, MS-RCNN only
predicts the truck head.
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We show the numerical results on validation set in Table 6 and compare with other
methods on Cityscapes using numbers reported in their paper. From Table 6, one can
see that GAIS-Net has better performances than Mask-RCNN using ResNet50-FPN.
(Mask-RCNN only reports Cityscapes results with ResNet50-FPN and claims using
a deeper backbone gets similar results.) The improvement gap between HQDS and
Cityscapes is mainly caused by the latter’s much shorter baseline and focal length. We
search over all Cityscapes’s disparity from PSMNet and found 9-disparity is the min-
imum where a rough object shape could be shown, corresponding to about 50 meters,
checked with distances on city maps and their GPS. Cityscapes also officially provides
sparse disparity maps using SGM [18], and their analysis shows a similar result. We
illustrate the analysis in Fig. 7. By contrast, HQDS could show rough object shapes
over 150 meters referring to distances on city maps and our GPS. Moreover, quality
of disparities is adversely affected by Cityscapes lower resolutions of images and op-
tical defocus for objects at distances. The experiment further validates the importance
and our sensor fusion exploration of incorporating geometric information for instance
segmentation using longer baseline and focal length, since providing GAIS-Net with
higher quality disparity maps significantly improves performance in Table 2.

5 Conclusion and Future Work

From the motivation for sensor fusion, with the aid of disparity information from stereo
pairs, which gives a geometry prior of scenes, GAIS-Net improves instance segmenta-
tion performance and attains the state of the art. We list 3D bounding box and shape
inference from 2D boxes and masks as the future work. In this work, we choose dis-
parity as the representation to avoid quadratic error issue in depth. 3D box inference

Fig. 7. Disparity maps of Cityscapes. For better visualization, we multiply disparity values by
15. Left: image; middle: disparity from PSMNet; right: officially provided disparity using SGM.
Women in the orange box could be roughly seen in results from PSMNet and SGM (9-disparity),
but people in the white box couldn’t be seen in both. (No human-shape beside the orange boxes
in PSMNet and SGM.) Also, the background shows irregular shapes in red boxes.

Table 6. Instance segmentation results on Cityscapes datset.

Evaluation Training data Backbone Mask AP
DWT [1] fine + coarse - 19.8
SGN [33] fine + coarse - 29.2

BshapeNet [23] fine only - 32.1

Mask-RCNN [16] fine only ResNet50-FPN 31.5
Our GAIS-Net fine only ResNet50-FPN 32.5

Mask-RCNN [16] fine + COCO ResNet50-FPN 36.4
Our GAIS-Net fine + COCO ResNet50-FPN 37.1
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requires depth values. Longer baseline and focal also have the advantage to suppress
depth error from the error relationship |∆Z| = Z2∆m

bf in Section 3.1.
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