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Figure 1. GAIS-Net results on HQDS dataset. Left column shows stereo left images with histogram equalization to enhance contrast for
better visualization. Middle and right column show Mask-RCNN and GAIS-Net results, respectively. Each instance has different colors.
With the aid of geometric information, GAIS-Net can segment out the person from the overlapping area in the first row example. In the
second row scenario, Mask-RCNN generates distorted mask for the smoking motorcyclist because of cigarette plume and in contrast
GAIS-Net displays a more robust shape control capability.

Abstract
Most previous works of outdoor instance segmentation

for images only use color information. We explore a novel
direction of sensor fusion to exploit stereo cameras. Geo-
metric information from disparities helps separate overlap-
ping objects of the same or different classes. Moreover, geo-
metric information penalizes region proposals with unlikely
3D shapes thus suppressing false positive detections. Mask
regression is based on 2D, 2.5D, and 3D ROI using the
pseudo-lidar and image-based representations. These mask
predictions are fused by a mask scoring process. How-
ever, public datasets only adopt stereo systems with shorter
baseline and focal legnth, which limit measuring ranges of
stereo cameras. We collect and utilize High-Quality Driving
Stereo (HQDS) dataset, using much longer baseline and fo-
cal length with higher resolution. Our performance attains
state of the art. Please refer to our project page for codes
and data. The full paper is available here.

1. Introduction
Instance segmentation, which segments out every object

of interest, is an elemental task for computer vision. It is
crucial for autonomous driving because it is vital to know
positions for every object instance on roads. In the context
of instance segmentation on images, previous approaches
only operate on RGB imagery, such as Mask-RCNN [3].

However, image data could be affected by illumination,
color change, shadows, or optical defects. These factors can
degrade the performance of image-based instance segmen-
tation. By utilizing another modality that provides geomet-
ric cues of scenes, and since object shapes are independent
of object texture and color change, these strong priors add
more robust information of the scenes. A prior work [7] that
goes beyond the dominant paradigm to incorporate depth
information only uses it for naive ordering rather than di-
rectly regressing masks or building an end-to-end trainable
model to propagate depth information. Besides, their depth
maps are predicted from monocular images, making the
depth ordering unreliable.

In outdoor scenes, stereo cameras or lidar sensors are
commonly used for depth acquisition. Stereo cameras are
low-cost and their adjustable parameters, such as longer
baselines (b) and focal lengths (f ), favor stereo matching
at far fields. Relationship of depth and disparity is given by

depth =
f × b

disparity
. (1)

1-disparity (the minimal pixel difference showing the ideal
longest range a stereo system could detect) represents far-
ther distance if using longer f and b. Next, longer base-
lines and focal lengths favor more precise geometric esti-
mations [5], since longer baselines produce smaller trian-
gulation error, and longer focal lengths project objects on
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images with more pixels and thus enhance the robustness of
stereo matching and show more complete shapes.

In this paper, we propose Geometry-Aware Instance Seg-
mentation Network (GAIS-Net) that takes the advantages of
both the semantic information from image domain and geo-
metric information from disparity maps. Our contributions
are summarized as follows:

1. To our knowledge, we are the first to perform instance
segmentation on imagery by fusing images and disparity in-
formation to regress object masks.

2. We collect High-Quality Driving Stereo (HQDS)
dataset, with a total of 8.8K stereo pairs and with f × b
4 times larger than the current best dataset, Cityscapes.

3. We present GAIS-Net, an aggregation of representa-
tion design for instance segmentation using images, image-
based, and point cloud-based networks. We train GAIS-Net
with different losses, and fuse these predictions using the
mask scoring. GAIS-Net achieves the state of the art.

2. Method

Our goal is to construct an end-to-end trainable network
to perform instance segmentation for autonomous driving.
Our system segments out each instance and outputs con-
fidence scores for bounding boxes and masks for each in-
stance. To exploit geometric information, we adopt PSM-
Net [1], the state-of-the-art stereo matching network, and
introduce disparity information at ROI heads. The whole
network design is in Fig. 2.

We build a two-stage detector with a backbone net-
work, such as ResNet50-FPN, and a region proposal net-
work (RPN) with non-maximum suppression. Object pro-
posals are collected by feeding a stereo left image into the
backbone network and RPN. The same as Mask-RCNN, we
perform bounding box regression, class prediction for pro-
posals, and mask prediction based on image domain fea-
tures. Corresponding losses are denoted as Lbox, Lcls, and
L2Dmask, and are identified in [3].

2.1. Geometry-Aware Mask Prediction

2.5D ROI and 3D ROI. We use PSMNet [1] and stereo
pairs to predict dense disparity maps, projected onto the left
stereo frame. Next, RPN outputs region proposals. We col-
lect proposals and crop out these areas from the disparity
map. We call these cropped out disparity areas as 2.5D ROI.

Based on the observations from pseudo-lidar work [6],
which describes the advantage of back-projecting 2D grid
structured data into 3D point cloud and processing with
point cloud networks, we back-project the disparity map
into R3 space, where for each point, the first and second
components describe its 2D grid coordinates, and the third
component stores its disparity value. We name this repre-
sentation as 3D ROI.

Instance Segmentation Networks. Each 3D ROI con-
tains different number of points. To facilitate training, we
uniformly sample the 3D ROI to 1024 points, and collect
all the 3D ROI into a tensor. We develop a PointNet struc-
tured instance segmentation network to extract point fea-
tures and perform per-point mask probability prediction.
We re-project the 3D feature onto the 2D grid to calculate
the mask prediction and its lossL3Dmask. The re-projection
is efficient because we do not break the point order in the
point cloud-based instance segmentation. L3Dmask, same
as L2Dmask, is a cross-entropy loss between a predicted
probability mask and its matched groundtruth.

To fully utilize advantages of different representations,
we further do 2.5D ROI instance segmentation with an
image-based CNN. Similar to instance segmentation on 2D
ROI, this network extracts local features of 2.5D ROI, and
later performs per-pixel mask probability prediction. The
mask prediction loss is denoted as L2.5Dmask.

2.2. Mask Continuity

We sample 3D ROI to 1024 points uniformly. However,
predicted masks, denoted as M3D, and their outlines are
sensitive to pseudo-lidar sampling strategies. An undesir-
able sampling is illustrated in Fig. 3. To compensate the un-
desirable effect, we introduce a mask continuity loss. Since
objects are structured and continuous, we calculate a mask
Laplacian as ∇2M = ∂2M

∂x2 + ∂2M
∂y2 , where x and y denote

the dimensions of M . Mask Laplacian computes continu-
ity of M . Further, the mask continuity loss is calculated as
Lcont = ‖∇2M‖2 for penalizing discontinuities of M .

2.3. Representation Correspondence

We use the point cloud-based network and the image-
based network to extract features and regress M3D and
M2.5D. These two masks should be similar because they
are from the same disparity map. To evaluate the similar-
ity, cross-entropy is calculated between M3D and M2.5D,
and serves as a self-supervised correspondence loss Lcorr.
Minimizing this term lets the networks of different repre-
sentations supervise each other to extract more descriptive
features for mask regressing, resulting in similar probability
distribution between M2.5D and M3D. Mask-RCNN uses a
14×14 feature grid after ROI pooling to regress masks. We
also use this size at the mask heads.

2.4. Mask Scores and Mask Fusion

MS-RCNN [4] introduces mask scoring to directly re-
gresses MaskIoU score based on a predicted mask and
its associated matched groundtruth, showing quality of the
mask prediction. However, their scores are not adopted at
inference time to help manipulate mask shapes.

We adopt mask scoring and further exploit MaskIoU
scores to fuse mask predictions from different represen-



Figure 2. Network design of our GAIS-Net. Bbox is for bounding box. We color modules in blue and outputs or loss parts in orange.
In the MaskIoU module, the 2D features and 2D predicted mask are from the 2D mask head. They are fed into MaskIoU head to regress
MaskIoU scores. We draw the MaskIoU head separately for clear visualization. ⊕ stands for concatenation.

Figure 3. Undesirable sampling example. The blue areas repre-
sent foreground. Suppose we uniformly sample every grid center
point in the left figure, resulting in the point cloud showing in the
occupancy grid on the right. Red crosses are undesirable sampling
points, which just lie outside the foreground object, making the
shape after sampling different from the original one.

tations at the inference time. The mask fusion process
is illustrated in Fig. 4. During the inference time, we
concatenate features and predicted masks of different rep-
resentations respectively as inputs to the MaskIoU head.
Scores of s2D, s2.5D, and s3D are outputs from the Mask-
IoU head. We fuse mask predictions using their correspond-
ing mask scores. We first linearly combine (M2.5D, s2.5D)
and (M3D, s3D) to obtain (MD, sD) for the disparity. The
formulation is as follows.

MD = M2.5D×
s2.5D

s2.5D + s3D
+M3D×

s3D
s2.5D + s3D

, (2)

sD = s2.5D ×
s2.5D

s2.5D + s3D
+ s3D ×

s3D
s2.5D + s3D

. (3)

Later, we linearly fuse (M2D, s2D) and (MD, sD) likewise
to obtain the final probability mask Mf and its correspond-
ing final mask score. The inferred mask is created by bina-
rizing Mf .

The mask scoring process should not be different for
each representation. We only use 2D image features and
M2D to train a single MaskIoU head instead of construct-
ing 3 MaskIoU heads for each representation. In this way,
the MaskIoU module would not add much more memory
use and the training is also effective. The MaskIoU loss is
denoted as Lmiou.

Table 1. Comparison between collected HQDS and other pub-
lic datasets for instance segmentation with stereo data. Stereo
pairs # means number of training stereo pairs. Stereo camera base-
line (b) is in meters. fx is for horizontal focal length.

Dataset Resolution
(megapixels)

Stereo
Pairs #

b
(m)

fx
(pixels)

Cityscapes 2.09 2.7K 0.2 2.2K
KITTI 0.71 0.2K 0.5 0.7K
HQDS 3.15 6K 0.5 3.3K

3. Experiments

3.1. HQDS Dataset

Outdoor RGBD scene understanding is still less explored
since much longer range sensing is required to align infor-
mation from images and depth. Such as vehicles at dis-
tances showing in images but undetected by a depth sen-
sor would bring ambiguity into RGBD methods. To con-
duct exploration of outdoor RGBD methods, and provide
high quality data to reveal advantages of sensor fusion, we
collect High-Quality Driving Stereo (HQDS) dataset in ur-
ban environments. Table 3.1 shows a comparison with other
public datasets for instance segmentation. Image resolution
of HQDS is 1024× 3072. From the table and Eq. 1. HQDS
has the largest f × b. Measuring range by the configuration
is up to 1650 meters with 1-pixel disparity, which is only
440 and 350 for Cityscapes and KITTI. Note that produced
disparity maps are computed by stereo matching methods
so actual working distances are associated with methods’
robustness and image noise. However, longer baselines
and focal lengths still favor far-field stereo matching since
the former could show better geometry and more complete
shapes for objects at distances [5].

HQDS contains 6K/1.2K stereo pairs for training/testing.
We follow a half-automation process to annotate data with



Figure 4. Inference time mask fusion of predictions from different representations. We fuse the 2.5D mask and 3D mask first because
they are from the same source. We then fuse the mask predictions from the image domain and disparity. ⊕ represents concatenation.

a group of supervised annotators. Our internal large-scale
labeling system produces preliminaries, and the annotators
adjust yielded bounding boxes and mask shapes or filter out
false predictions to produce HQDS groundtruth.

There are 60K instances in the training set and 11K in
the testing set. We adopt 3 instance classes: human, bi-
cycle/motorcycle, and vehicle. Although other datasets on
driving adopt more, such as Cityscapes use 8 classes, from
MaskRCNN’s study [3] they suffer from much inter-class
ambiguity which leads to biased results.

Associated number of instances in the training and test-
ing sets are (5.5K, 1.5K, 52.8K) and (2.4K, 1K, 8.4K) re-
spectively. Most of non-synthetic datasets encounter class-
imbalanced issue. To remedy the imbalance, we adopt
COCO dataset (instance segmentation for common objects)
pretrained weights with class pruning in our implementa-
tions and comparison methods.

Evaluation and Metrics. We fairly compare with recent
state-of-the-art methods validated on large-scale COCO
dataset, including Mask-RCNN [3], MS-RCNN [4], Cas-
cade Mask RCNN [2], and HTC [2] (w/o semantics), by us-
ing their publicly released codes and their COCO pretrained
weights. We follow their training procedures to conduct
comparison experiments.

We report numerical results in the standard COCO-
style. Average precision (AP) averages across different IoU
levels, from 0.5 to 0.95 with 0.05 as an interval. AP50 and
AP75 are 2 typical IoU levels. The units are %. Table 2
shows the comparison with others. The proposed GAIS-Net
attains the state of the art. We exceed Mask-RCNN using
the same backbone by 9.7% and 6.8% for bounding box and
mask AP, respectively.

3.2. Cityscapes Dataset

We also conduct experiments on Cityscapes dataset.
However, its baseline and focal length are shorter than
HQDS, and the maximal measuring distance is only 1/4 of
HQDS. Much shorter focal length and baseline limit the
working distance of stereo matching and produce dispar-
ity maps only focusing at near fields with poor shapes and
geometry [5]. From Table 3, performance of GAIS-Net
is still better than Mask-RCNN. The improvement gap be-
tween HQDS and Cityscapes is mainly caused by the latter’s
shorter baseline and focal length.

Table 2. Quantitative comparison on HQDS testing set. The
first table is for bounding box evaluation. The second table is for
mask evaluation.

Bbox Evaluation AP AP50 AP75 APS APL

Mask-RCNN 36.3 57.4 38.8 19.1 51.9
MS-RCNN 42.2 65.1 46.6 20.8 59.6

Cas. Mask-RCNN 37.4 55.8 38.9 18.0 54.7
HTC 39.4 58.3 43.1 18.5 57.9

GAIS-Net 46.0 67.7 53.3 23.6 66.2
Mask Evaluation AP AP50 AP75 APS APL

Mask-RCNN 33.9 53.2 35.5 14.4 49.7
MS-RCNN 39.2 61.3 40.4 18.8 56.4

Cas. Mask-RCNN 33.4 54.4 34.8 11.7 49.5
HTC 34.5 56.9 36.7 11.6 52.0

GAIS-Net 40.7 65.9 43.5 18.3 59.2
Table 3. Instance segmentation results on Cityscapes datset.

Evaluation Training data Mask AP
Mask-RCNN [3] fine only 31.5
Our GAIS-Net fine only 32.5

Mask-RCNN [3] fine + COCO 36.4
Our GAIS-Net fine + COCO 37.1
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